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Selection rules for vibronic coupling in quasi-one-dimensional 
solids 111: staggered molecular stacks 

Ivan BoioviCt and NataSa BoioviC$ 
t Varian Research Center, Palo Alto, CA 94303, USA 
$ Department of Mathematics and Computer Science, San Jose State University, San Jose, 
CA 95192-0103. USA 

Received 25 June 1990 

Abstract. Vibronic instabilities in conducting polymers and quasi-one-dimensional metals 
are studied. For all the line groups that contain glide planes, the symmetrized Kronecker 
squares of irreducible representations are decomposed into irreducible constituents. The 
derivation of the selection rules for linear-vibronic-coupling matrix elements is thus 
completed for all the line groups. 

1. Introduction 

Organic compounds such as TMTSF (bis-tetramethyl-tetraselenafulvalene), NMP ( N -  
methylphenazinium), HMTTF (hexamethylene tetrathiafulvalene), "I' (tetra- 
thiatetracene), TSeT (tetraselenatetracene), and the like frequently crystallize in a 
peculiar form of staggered molecular stacks. Such compounds have attracted worldwide 
attention from physicists and chemists (Miller 1982, Monceau 1985, Kamimura 1985, 
Kuzmany et al 1985, Skotheim 1986), when it was discovered that (TMTSF)2C104 
becomes superconducting with T, = 1.4 K (at pressures above 7 kbar). That was quite 
unexpected, since neither of the constituent elements is superconducting itself; indeed, 
it was the first organic superconductor discovered. Before long, a few other related 
compounds such as (HMTTF),ClO, were synthesized, and some of these were found 
to be superconducting at normal pressure and with critical temperatures up to 13 K 
so far. 

Although many details of the underlying physics remain to be clarified, it seems 
certain that one of the key ingredients is the reduced dimensionality of the electronic 
subsystem. In such materials, certain topological effects-e.g. the Peierls (or charge- 
density-wave) instability, or the spin-density-wave instability-are generally expected 
(Peierls 1955) to occur. To study these systematically, one needs to know the selection 
rules for the matrix elements of the relevant scattering process-e.g. the linear electron- 
phonon coupling matrix elements in the case of vibronic instabilities. Technically, 
these are derived by finding all the irreducible components of the symmetrized 
Kronecker squares ( SKS) of all the irreducible corepresentations of the line groups. 
Precisely that task has been accomplished in this series of papers (BoioviC. and BoioviC 
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1989, 1990, to be referred to as I and 11, respectively); the present paper completes it 
by considering all the line groups that contain a glide plane, i.e. the 
groups Lnc ( n  = 1 ,2 , .  . .) and Lncc ( n  = 2,4, .  . .) isogonal to C,,, LAC ( n  = 1 ,2 , .  . ,) 
and L ( 5 ) 2 c  ( n  = 2 , 4 , .  . .) isogonal to Dnd, and L(2n)2c ( n  = 1 , 3 , .  . .) and Lnlmcc 
( n  = 2,4,  . . .) isogonal to Dnh.  

The paper is organized as follows. In section 2, we introduce the notation to be 
utilized in the tables; in section 3 the tables of the irreducible components of the SKS 

of the irreducible correpresentations of the groups under study are given; in section 
4 some examples are presented, and in section 5 we summarize our conclusions. For 
the reader’s convenience, the character tables of the corepresentations of the groups 
under study are given in the appendix. 

2. Notation 

Let us define some of the notation which we shall use: 
A (B): one-dimensional irreducible representation, irrep, of a line group L, even 

(odd) with respect to the vertical mirror plane; 
E: a two-dimensional irrep of L; 
G: a four-dimensional irrep of L; 
(0, D*): a pair of complex-conjugate irreps, a corepresentation of L; 
hk: quasi-momentum; we choose h = 1 and the translation period a = 1 so that 

O<k<.rr ;  
hm: quasi-angular momentum; m = 1 ,2 , .  . . , ( n  -2)/2 for n even and m = 

1 , 2 , .  . . , ( n  - 1)/2 for n odd, where n is the order of the screw axis. 
In tables 1-3 we also utilize the following abbrevations: 

r = 2 k  t = 2 ~ - 2 k  w = 2 m  v = 2 m - n .  

3. Tables of irreducible components of the symmetrized Kronecker squares of 
corepresentations of all the line groups that contain a glide plane 

Since the SKS of an one-dimensional corepresentation is one-dimensional (and hence 
irreducible) itself, in the following tables 1-3 we list the irreducible constituents of 
the SKS of higher- (two or four) dimensional corepresentations only. 

4. Examples 

Let us illustrate how these tables can be utilized by considering a staggered stack of 
identical diatomic molecules shown in figure 1. A similar model has already been 
described in 11; the difference is that the neighbouring molecules were at right angles 
with respect to one another, and the overall line group symmetry was U2/mcm there; 
here the angle is assumed to be different from 0, *.rr/2, which reduces the symmetry 
onto L2/mcc. Let us suppose that each atom contributes one relevant atomic orbital 
of the 1 = 0 type (i.e. s, p, d,, etc) and let tl and t ,  denote the intra- and inter-molecular 
transfer integrals as indicated in figure 1. The tight-binding electronic energy bands are 

E(kA0) = 2t1 + 2t2 cos k 
E(kAl )=-2 t l+2 t , cos  k 

E (  kBO) = 2t, - 2t2 COS k 
E(kB1) = -2t, -2t2 COS k. 
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Table 1. S K S  of corepresentations of the line groups Lnc  ( n  = 1,3,. . .)  arid Lncc ( n  = 
2,  4, . . . j .  

D [ D ' ]  - iOAOJ 

k<77-/2 
k = 7112 
k > r r / 2  

k <  77-12 
k = 77-12 
k >  7112 

k < 77-12 
k = 77-12 
k >  7112 

k < 77-12 
k = 77-12 
k >  77-11 

i rA0, -rAO) 
i TAO, 77-BO) 
( f B O ,  -1BO) 

irAO, -rAOJ 
i TAO, vBOj 
( tBO, -!BO) 

i TEN, - rEw J + ( rAO, - rAO) + ( OEw) + (OBO) 
i rAq, -rAq) + ( rBq, -rBq) + (rA0, -rAO) 

( rEc, - rEu j + ( rAO, - rAO) + (OEu)  + (0,530) 
(rrEw, s r€w)+ (~AO,  nBOj+(OEw)+(OBO) 
2(rrAO, nBO)+(rrAq, aBq)+(OAq)+(OBq)+(OEO) 
( V E L ,  v E c )  + inAO, TBO) + (OEc) + (OBOj 
i f € & ,  - f E w )  + ((BO, -[BO) + (OEw)  + (OBO) 
( tAq, - rAq + ( t B 2 ,  -1B2) + ( [BO,  - f B 0 )  + (OAq I t ( OBOi 
( t E c ,  -!€U) + ([BO, -(BO) + ( O E c )  + iOB0) 

+ (OAq) + (OBq) + (OBO) 

(rA0, -rAO) 
(TAO, 77-BO) 
( tBO, -rBO) 

(rA0, -rAO) 
( TAO, x B 0 )  
(tBO, -(BO) 

2(OBOj 

3(OEw) + 3(OBO) 
3(OAq) + 3(OBq) + 3(OBO) 
3(OEc j +3(OBO) 

+ Only for n = 2q  = 2 , 4 , .  . . . 
$ Only for q = 2,4,. . . . 

For simplicity, let us assume that t ,  < 0, f2 < 0 and I tZI > 1 t,l to avoid band overlap- 
ping; in that case there is no band degeneracy except at k = 7r where they cross pairwise: 
A0 merges with BO, and AI with B1, respectively, at k =  7 r / 2 .  In terms of the 
classification given in BoioviE (1984), they form two semiloop bandshapes. In what 
follows we will consider the cases when each molecule contributes one electron so 
that the lowest A0 band is half-filled, and when each molecule contributes two electrons 
so that it is completely occupied. 

Case 1. Here the Fermi level states belong to 

D = (77/2AO) + ( -7 /2AO)  = (7r/2EAO). 
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Table 2. SKS of corepresentations of the line groups LAC ( n  = 1 , 3 , .  . .) and L(%)2c 
( n = 2 , 4  , . . . .  ). 

D [ D z ]  - (OAO) 

( O E m i )  

(OEq) 

( k E A O )  

(kEBO) 

k < n J 2  
k = n / 2  
k >  n I 2  

k <  n J 2  
k = ~ / 2  
k >  ~ / 2  

k = 7rJ2 

k >  v i 2  

(OAO+) + (OBO+) 

(rGw)+(rEAO)+(OEw+)+(OBO-I 
2(rEq)+(rEAO)+(OEq)+(OBO-) 
(rGu)+(rEAO)+(OEu+)+(OBO-) 
( a E w + ,  TEw-)+(T€O)+(OEW+)+(OBO-) 
( T A q + ,  n B q + ) + ( n A q - ,  TBq-)+(TEO)+(OEq) 

( ~ E u + ,  T E U - )  + (~€0) + ( OEu-)  + (OBO-) 
+(OBO-) 

( f G w )  + (rEBO) + (OEw+) + (OAO- 1 
2(rEq)+(fEBO)+(OEq)+(OAO-) 
(rGu) + ( E B O )  + (OEu+) + (OAO-) 

2(0BO+)  

t Only for n = 2q = 2 , 4 ,  
$ Only for q = 2 . 4 , .  . . . 

From table 3 ,  entry (kEAO), case k = 7 ~ 1 2 ,  we find that 

[ r / 2 E A i ]  = ( rEAO) + (OAO+). 

(Notice the identity corepresentation appears in every [ D’]; it was omitted from tables 
1-3 for brevity.) 

Now, we have to construct the symmetry adapted displacement modes that trans- 
form according to the two corepresentations, (OAO+) and (TEAO), for which we can 
utilize the method expounded in BoioviC and Delhalle (1984). The resulting displace- 
ment modes are shown in figures 2 and 3 .  In the case of (TEAO), the modes are 
pairwise-degenerate, implying the existence of a vibronic instability with a complex 
order parameter. The breathing mode in figure 2 is transverse optic, and it is of high 
frequency since it involves bond stretching. The modes in figures 3 ( a )  are transverse 
and distortive; those in figure 3 ( b )  are displacive and longitudinal and they are 
analogous to the customary Peierls modes. 
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Table 3. SKS of corepresentations of the line groups L(%)2c ( n  = 1,3,. . .) and L n / m c c  
( n = 2 , 4 ,  . . . ) .  

[ D 2 ]  - (OAO+ j 

(O€m*) 

(aEm+, 77-€m-)$ 

k < 7112 
k = 77-12 
k >  7112 

k<77-12 
k=77-12 
k >  7112 

k < 7112 

k=77- /2  

k >  7112 

k < 77-12 
k = 77-12 
k >  77-12 

k < a / 2  
k =  7112 

k >  71/2 

( rGw)+( rEAO)+(OEw+ j+ (OBO- )  
(rEAq)+(rEBq)+(rEAOj+(OAq+)i-(OBq+) 

(rGu) + (rEAO)+ (OEu+j + (080- )  
+(OBO-) 

(v€w+, rrEw-)+(nEO)+(OEw+j+~,OBO-)  
2(77-€~)+(rrEO)+(OAq+)+(OBq+) t (OBO-) 
( ~ E U + ,  n € v - ) + (  aEO)+(OEt.+)+((IBO-) 
( f G w ) +  ( fEBO)  + (OEw+j + (OAO-j 
( t E A q )  + ( rEBq) + ( IEBO) + (OAq+) + (OBq+ j 

+ (OAO-) 
(rGD) + ( f E B O ) + ( O E ~ + ) + ( O A O - )  

(OBO+)+(OBO-) 

~ ( O E W + ) T ( O E W - ) + ~ ( O B O + ~ +  (OBO-) 
2(OAq+)+2(OBq+)+(OA4-)+(OBq-t) 

2 ( 0 € ~ + ) + ( 0 € ~ - ) + 2 ( O B O + ) t  (OBO--) 
+2(OBO+)+(OBO-) 

2(0BO+j 

t Only for n = 2q = 2 , 4 , .  . , . 
$ Only for q = 2 , 4 , .  . . 

Case 2. Here the states at the Fermi level transform according to 

D = (TEO).  

From table 5, entry (77/2EO),  one finds that 

[TEO’] = (OBO+) + (OBO-) + (0AO-t). 
None of these vibronically active modes are degenerate. Of these, the (0BO-t) mode 

shown in figure 4 ( a )  is transverse and distortive, and that in figure 4(b) is transverse 
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(oAo+) 

z 

3 
x k+ 

Figure 1. A staggered stack of identical diatomic 
molecules. 

Figure 2. The displacement mode which transforms 
according to the representation (OAO+). 

(nEAo) (nEAo) 

Figure 3. The displacement modes which transforms according to the representation 
(nEAO). 

and displacive; the former is the low-frequency vibration mode which could be expected 
to dominate the instability. The (OBO-) mode shown in figure 5 is displacive and 
longitudinal. 

5. Conclusions and discussion 

Having completed the derivation of the line-group selection rules for vibronic coupling, 
we are now in a position to compare the present results with those of I and 11, to draw 
some parallels, and point out some specific consequences of the presence or absence 
of particular symmetry elements. 
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(oBo+)  (oBo-) 

I L 

x 

Figure 4. The (OBO+) modes. Figure 5. The (OBO-) mode. 

The main issue, of course, is conservation of certain quantum numbers. The 
quasi-momentum h k  is found to be conserved without restrictions. The same is true 
for the quasi-angular momentum, unless the line group under consideration contains 
a screw axis. And even in the latter case, it is strictly conserved in all ‘normal’ scattering 
processes, in which 2 k  < T (the Brillouin zone edge). In the case of so-called ‘Umklapp’ 
processes, with 2 k  3 T ,  it jumps according to the rule ( k ,  m )  + ( k  + 2 ~ ,  m + p ) ,  as a 
result of coupling of rotational and translational symmetry operations, as explained 
in 11. A similar statement can be made for the parity with respect to a vertical mirror 
plane-it is strictly conserved without restrictions unless one deals with a glide plane, 
and in that case the parity is reversed in ‘Umklapp’ processes while it is conserved in 
‘normal’ processes. Even with that little complication in the case of ‘Umklapp’ processes 
in non-symmorphic line groups, the conservation or modification rules for these 
additional quantum numbers are simple and provide a mnemonically easy alternative 
to actually constructing the symmetrized Kronecker squares, and decomposing them, 
etc. With the help of these rules one should be able, for example, to easily and rigorously 
determine all the vibronically active displacements of a quasi-one-dimensional metal, 
as has been illustrated on several examples in this series of papers. Without them, it 
is indeed easy to miss some of the relevant modes and arrive at essentially wrong 
conclusions concerning the stability of the physical system considered; for an assess- 
ment and critique of several such cases see BoioviC (1985, 1986). 

The next relevant issue is that of the dimensionality of the order parameter involved. 
As already pointed out in I and 11, if the line group is rich enough to have a 
four-dimensional corepresentation, and if the electronic band structure of the polymer 
considered is such that the Fermi level falls in a band labelled with such a corepresenta- 
tion, i t  may happen that there are four degenerate vibrational modes that drive (or 
dominate) the vibronic instability. Such a situation has not been clearly identified so 
far; there are some indications that it could be occurring in TaTl, (Sherwin et a1 1986). 
Of focal interest in such cases is the possibility (BoioviC 1984) that two independent 
Goldstone modes could to occur. 



5138 I Boiovic' and N Boiovic' 

Finally, this series makes the task of providing a constructive proof of the polymer 
(i.e. the line group) analogue of the Jahn-Teller theorem (Jahn and Teller 1937, Peierls 
1955) much easier. It would be sufficient to explicitly construct the vibrational sym- 
metry-adapted bases for all the inequivalent graphs (sets of points generated by the 
line group) of all the line groups (cf, e.g., BoioviC and Delhalle 1984, Koch and Seelig 
1987), and to identify in each case at least one non-trivial vibronically active mode. 
Work along these lines is in progress. 

Appendix 

Listed below are the characters of all the irreducible corepresentations of the line 
groups under study (i.e. all that contain a glide plane). The characters are listed here 
only for the necessary elements (coset representatives) since that is sufficient to identify 
the corepresentation. In these tables, s = 0, 1, . . . , n - 1; t = 0, i 1 ,12 , .  . . , and a = 
2rrfn.  

Table4. The characters of irreducible corepresentations ofthe line groups Lnc ( n  = 1.3, . . .) 
and Lncc ( n  = 2 , 4 , .  . . j ,  

1 
1 
2 cosimsa) 
( -1Y 
( - 1 l T  
2 cos( k t J  
2 cosikt) 
4 cosimsa j cos (k t )  
2(-1Y cos(kr) 
2(-1)s cos(kt) 
2(-1) '  

2 (  -1  1"' 
4 ( -1) '  C O S ( ~ S ~ )  

I 
- 1  

0 
-1 

1 
2 cos( k / 2 )  

0 
- 2  ~ 0 s ( k / 2 )  

2 cos( k /  2 )  
- 2  c o s ( k / 2 )  

0 
0 
0 

+ Only for n = 29 = 2 , 4 , ,  , . . 

Table 5. The characters of irreducible corepresentations of the line groups LAC ( n  = 1,3, , . .) 
and L(%)2c i n  = 2 , 4 , ,  , ,), 

(OAOi )  1 1 * I  rI 
(OBOi) 1 -1  *1  1 1  
( O E m i )  2 cos( msa)  0 0 r 2  cos(ma/2)  
(OEq j+  2( -1j5 0 0 0 
(kEAO j 2 cosikt) 2 cos( k / 2  j 0 0 
(kEBOj 2 cosikt) - 2   COS(^/^) 0 0 
i kGm J 4cos(msa)  cos(kr) 0 0 0 
(kEA9, kEB9 jT 4(-1)' cos(kt j  0 0 0 
( 7 E O )  2(-1)1 0 0 0 
( n E m + ,  x E m - )  4( -1 ) '  cosi msa 1 0 0 0 
(nA9*,  x B 9 +  j+ 2(-1)"' 0 T2 0 

Only for 9 = 2 , 4 ,  
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Table 6. The characters of irreducible corepresentations of the line groups L ( 2 n ) 2 c  ( n  = 
1 , 3 , .  . .) and L n / m c c  ( n  = 2 . 4 , .  . ,). 

1 
1 
2 cos( msa J 
(-1J’ 
1 
2 cos( kt ) 
2 cos( k r )  
4 cos( msa cos( kt J 
2 cos( kt J 
2 cos( kt J 
2(-1)l 
4 ( - l ) ‘cos(msa)  
2(-1 

1 
-1 

0 
1 

-1 
2 c o s i k / 2 j  

-2 c o s ( k / 2 j  
0 
2 c o s i k / 2 )  

0 
0 
0 

-2 COS( k / 2 )  

*l 
i l  
i2 
*1 
*1 
0 
0 
0 
0 
0 
0 
0 
0 

t Only for 9 = 2 ,4 ,  , 

References 

BoioviC I 1984 Phys. Ret .  B 29 6586 
- 1985 Phys. Rev. B 32 8136 
- 1986 Phys. Rev. B 33 5956 
BoioviC I and BoioviC N 1989 J.  Phys. A: Math. Gen. 22 145 
- 1990 J.  Phys. A :  Math. Gen. 23 2775 
BoioviC I and Delhalle J 1984 Phys. Re t .  B 29 4733 
Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220 
Kamimura H (ed)  1985 Theoretical Aspects of Band Structures and Electronic Properties of Pseudo-One- 

Koch M and Seelig F 1987 Int. J. Quant. Chem. 32 249 
Kuzmany H, Mehring M and Roth S (eds) 1985 Electronic Properties ofPolymers and Relmed Compounds 

Miller J (ed)  1982 Extended Linear Chain Compounds (New York: Plenum) 
Monceau P (edJ 1985 Electronic Properties of Inorganic Quasi-One-Dimensional Compounds (Dordrecht: 

Peierls R E 1955 Quantum Theory ofSol ids  (Oxford: Oxford University Press) 
Sherwin M S, Zettl A and Richards P 1986 Phys. Rec. B 36 6708 
Skotheim T 1986 Handbook of Conducting Polymer$ (New York: Dekkerj 

Dimensional Solids (Dordrecht: Reidel) 

(Berlin: Springer) 

Reidel) 


